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The laminar viscous flow in the gap between two concentric spheres is investigated for 
a rotating inner sphere. The solution is obtained by solving the Navier-Stokes equations 
by means of finite-difference techniques, where the equations are restricted to axially 
symmetric flows. The flow field is hydrodynamically unstable above a critical Reynolds 
number. This investigation indicates that the critical Reynolds number beyond which 
Taylor vortices appear is slightly higher in a spherical gap than for the flow between 
concentric cylinders. The formation of Taylor vortices could be observed only for 
small gap widths s Q 0-17. The final state of the flow field depends on the initial 
conditions and the acceleration of the inner sphere. Steady and unsteady flow modes 
are predicted for various Reynolds numbers and gap widths. The results are in agree- 
ment with experiment if certain accuracy conditions of the finite-difference methods 
are satisfied. It is seen that the equatorial symmetry is of great importance for the 
development of the Taylor vortices in the gap. 

1. Introduction 
I n  recent years several theoretical and experimental investigations have been con- 

cerned with the fluid motion in rotating systems bounded by spherical shells. Such 
investigations are often stimulated by geophysical and meteorological problems, in 
which such a geometry and the rotation have a strong influence on the fluid motion. 
A survey of the theoretical and experimental work of such flows was given by Roesner 
(1977). The major similarity parameters that  determine the motion are the Reynolds 
number and the Rossby number in a viscous fluid with constant properties. Depending 
on these parameters, very different fluid phenomena were observed; e.g. the free 
singular shear layer, inertial oscillations or centrifugal instabilities. The present 
investigation is related to the centrifugal instability, which leads to the formation of 
Taylor vortices in narrow spherical gaps if the Taylor number or the Reynolds number 
exceeds a certain critical value, similar to the flow between cylindrical gaps. However, 
in spherical gaps several Taylor-vortex configurations (modes) can be generated, as 
first observed experimentally by Sawatzki & Zierep (1970). The modes are obtained 
by different angular accelerations leading to the steady-state boundary conditions, 
which were first given by Wimmer (1976). According to these experiments, three 
steady axisymmetric and two unsteady non-axisymmetric flow modes were found for 
a gap width of s = 0.15. Each of these different flow modes persists in a certain range 
of Reynolds numbers, and in addition one mode can change into another. This seems 
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to suggest that each flow mode has only a limited range of stability. The experiments 
of Khlebutin (1968), Sawatzki & Zierep (1970), Munson & Menguturk (1975), 
Nakabayashi (1978) and Wimmer (1980) indicate that the first critical Reynolds 
number at which Taylor vortices occur in spherical gaps is either almost the same as 
for infinite cylindrical gaps or only slightly different from it; although Nakabayashi 
(1978) reported a significant difference between the optical observations and torque 
measurements for the determination of the critical value at very small gap widths. 

Several theoretical investigations have been devoted to predicting the flow between 
rotating spheres as well as the first critical Reynolds number at  which that flow 
becomes unstable. At finite Reynolds numbers, however, the simplest axisymmetric 
steady flow still depends on two independent variables, and all three velocity com- 
ponents are non-zero. For arbitrary gap widths a one-parameter perturbation in 
powers of the Reynolds number was chosen by Ovseenko (1963), Munson &Joseph 
(1971 a), and in powers of the latitude angle 0 by Ritter (1973). These expansions have 
the property that the accuracy of the truncated series decreases very rapidly, especially 
in regions that are important for the stability analysis. In order to circumvent these 
difficulties and to provide a sufficiently accurate solution for stability analysis, spectral 
methods have been employed by Munson & Joseph (1971b), Herbert (1978) and 
Dennis & Singh (1978). However, the stability analysis with an energy method by 
Munson & Joseph (1971 b )  showed that the critical Reynolds number is influenced by 
the number of their truncated series expansion, describing the unperturbated basic 
flow. The zeroth-order approximation in powers of Re for the unperturbated basic flow 
was chosen by Yakushin (1970), and yielded slightly higher values for the critical 
Reynolds numbers compared with experimental values. A two-parameter perturbation 
in powers of Reynolds number and gap width was employed by Walton (1978). In this 
approach, the flow field between the spheres is a slight perturbation of the flow field 
between cylinders for narrow gaps. The critical value at  which Taylor vortices set in is 
obtained as a perturbation of the critical Taylor number for cylinders in a narrow gap. 
The results seem to be very sensitive to the gap widths, and the critical Taylor number 
can be slightly higher or lower than the value for narrow cylindrical gaps. 

Finite-difference methods, with different orders of the truncation error, have been 
used several times by Pearson (1967), Greenspan (1975) and Bonnet & Roquefort 
(1976). The investigations by Pearson and Greenspan are related to a relatively large 
gap width s = 0.5, where Taylor vortices have never been observed. For higher 
Reynolds numbers the results presented by Greenspan are strongly influenced by 
truncation errors, and result from the advective formulation of the convective terms 
in the Navier-Stokes equations. Bonnet & Roquefort have employed a modified 
alternating-direction method. They found, for a gap width s = 0.15 and a Reynolds 
number Re = 1500, two different steady-state solutions depending on the initial 
conditions. The spin-up acceleration of the inner sphere from rest to the steady-state 
condition yields a flow without Taylor vortices, while the spin-up from the steady 
state at  Re = 900 to Re = 1500 yields a flow with two Taylor vortices in the gap. The 
reported calculations for a gap width s = 0.0625 also seem to be influenced by 
truncation errors. The step size chosen for the meridional direction A0 = A n  is not 
sufficient. A spectral method, together with a finite-difference approximation, was 
chosen by Astafeva, Vvedenskaya & Yavorskaya (1977). The meridional influence 
was separated by a truncated Legendre-series expansion. For a gap width s = 0.1 and 
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a Reynolds number Re = 1500, about 90 Legendre components are necessary for the 
meridional resolution. 

The present investigation concerns the flow field in spherical gaps in a range in which 
Taylor vortices are expected. The aim is to determine the number of possible flow 
modes when the hydrodynamic limit of stability is exceeded. The unsteady Navier- 
Stokes equations are solved in their vorticity-stream-function formulation by means 
of a finite-difference approximation. I n  order to reduce the computational effort, the 
investigation is restricted to flows symmetric with respect to the equatorial plane. I n  
addition to a consistent and stable finite-difference approximation it is essentiaI to 
have a sufficiently fine temporal and spatial resolution. Test calculations showed that 
a change in the step sizes could result in a completely different flow field, even though 
the profiles of the flow variables were smooth and remained stable, indicating that the 
numerical stability was maintained throughout the integration. Therefore, the 
influence of the resolution is estimated prior to the integration in order to ensure 
convergence to the correct solution. 

2. Mathematical formulation 
A viscous fluid with constant properties is considered. The fluid is bounded by 

concentric spherical shells, which may rotate with arbitrary angular velocities about 
a common axis. For the sake of simplicity, the analysis is restricted to axisymmetric 
flows. I n  spherical co-ordinates ( r ,  8, rp) the number of independent variables is reduced, 
and the pressure can be eliminated by introducing the vorticity components into the 
Navier-Stokes equations. The continuity equation is satisfied identically by the stream 
function. Since the boundary conditions depend on time, the solution must be truly 
time-dependent. The velocities in spherical co-ordinates are defined by the circum- 
ferential function q5 and the stream function @ as 

4 v=- 1 a@ w = -- 1 a@ u = --- 
r2sin 8 a8 ’ rsin8 ar ’ r sin 8’ 

with u in the radial direction, w in the meridional direction and v in the circumferential 
direction. The velocities u and w describe the secondary motion in the spherical gap, 
and v describes the main motion. The circumferential momentum equation is 

and the vorticity equation is 

and the Poisson equation for the stream function 

D2@ = 5, 
where the differential operator D2 is defined by 

a 2  i a2  cote a D2=-+----- 
ar2 r2a02 r2 88‘ 
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All quantities in these equations are non-dimensionalized with respect to the outer 
radius R, and a reference angular velocity Q,, = 800v/Ri, where v is the kinematic 
viscosity of the fluid. The dimensionless angular velocity is denoted by w = Q/Q0 and 
the ratio of the inner to the outer radius of the spheres by 6 = R1/R2. The subscript 1 
refers to the inner sphere and the subscript 2 to the outer sphere. The vorticity in 
this system of equations is only an auxiliary function and can be removed. The 
velocity field is determined by the two functions (6 and @, which depend on initial and 
boundary conditions. Singularities are only present in the equations when the inner 
radius Rl is zero, 

The boundary conditions are Stokes's no-slip condition and two symmetry conditions 
for the axis of rotation a t  I9 = 0 and for the equatorial plane I9 = in. The formulation 
of the boundary conditions for r$ and @ are 

: (6 = wl(t)  12sin28, $ = 0, 

1:  q5 = w,(t)sin28, #- = 0; 
0 < 1 9 < n ,  r = [ '  

(0:  (6 = 0, #- = 0, 

@ = 0. 

The boundary values for the vorticity equation are determined by the solution of the 
Poisson equation at these boundaries in such a way that the no-slip Condition at  the 
spheres is preserved. This yields ': [=-  a2@ 

o < 8 <in, Y = [I: with %= a@ 0;  
[ = -  

ar2 J 

0: [ =  0, 

g7r: [ =  0. 
l < r < l ,  1 9 = [  

Since the solution fort -+ co depends on the initial conditions, they have to be specified 
for each case separately. This will be discussed later. 

3. Method of solution 
The differential equations (2.1)-( 2.3) are discretized with truncated Taylor-series 

expansions. Two different approximations for the time-dependent equations (2. l ) ,  (2.2) 
are used, an explicit scheme with a truncation error O(At ,  Ar2, A@), and an implicit 
formulation with O(At2 ,  Ar2, AI9,). Implicit methods demand more computational 
effort for each time step than explicit methods, but the time step is less restricted. 
Because of the nonlinearity of the equations and the explicit formulation of the 
vorticity a t  the wall, an iteration procedure with under-relaxation for larger time steps 
must be performed. 

The domain of integration is covered by net points with constant step sizes. The sub- 
scripts i a n d j  denote the grid points in r and 8 directions, respectively, while n denotes 
the time t. The spatial step sizes are Ar and AI9, and the time step is At. The finite- 
difference equation for the first half time step of the momentum equation (2.1) for (6 is 

(1 - (1 -K) &At L1) (6%+* = (1 + +At&} (6; + K  #At L1(6;, (3.1) 
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and for the second half step 

(1 - (1  - K )  4AtL2} $3" = { 1 + ( 1  - K )  tat L,} $%+* + K =@t(L, + L,) $5. (3.2) 

The difference operators Ll and L, are defined by 

U t  1 
L14t = -2ar ($?+l,i -$?-1,i)  + (+i+l,j - 2$i,j + $,-I, i), 

The discretized form of the vorticity transport equation (2.2) for the first half step is 

(3.3) 

(1 - (1 - K )  +At MI} en+$ = {I + &At M,} 6;; + K  &At Ml [$. 

+ &At{( 1 - K )  P&+3 + (KP + &) $$}, 
and for the second half step 

{ 1 - ( 1 - K )  +At M,} [B+' = { 1 + ( 1 - K ) $At Ml) [?$* + $K At(& + M,) [$. 
+ *At{( 1 - K )  P+?;* + (1 - K )  Q$G+l} + &K At(P + &) $8, 

(3.4) 
with the difference operators M,, M,, P and Q defined as 

The explicit difference approximation is recovered from (3.1)-( 3.4) by setting the 
parameter K = 1 m d  the implicit approximation results from putting K = 0. 
Th? Poisson equation (2.3) for the stream function $is discretized with second-order 

accuracy, and leads to a large algebraic system of linear equations which has to be 
solved several times for each time step if the implicit method is used. With the super- 
scripts 1 and 1 + 1 for the iteration steps, the algorithm used here is 

\ I  

with the coefficients 

r; Aea 
d = Ar2di, 

2(Ar2+r2AB2)' 
d,  = 
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The acceleration factor is p. For K~ = 0, successive over-relaxation in single steps is 
implied, and, for K~ = 1, the over-relaxed line iteration. The rate of convergence for 
each iteration step is larger for line iteration than for the single-step methods; but so is 
the computational effort. For large values of r2AB2/Ar2 the line iteration is to be 
preferred, while, for r2  AB2/Ar2 -+ 1, simple over-relaxation yields less effort. Since, for 
this investigation, the ratio r2  AB2/Ar2 must be of order unity the single-step over- 
relaxation is preferable. The optimum acceleration parameter /3 depends on the ch&e 
of the step sizes, and is determined by numerical tests for each case. 

The discretization of the boundary condition for the circumferential component q5 
at B = 8;. is a second-order backwards approximation. The difference approximation 
of the vorticity component at  the wall influences directly the stability of the whole 
system of equations; this effect has been discussed several times in the recent literature. 
The first-order endpoint approximation is more stable than the second-order one, but 
little is known about the influence of the overall error in the solution. A test calculation 
showed that the percentage error in the solution is consistently of the order of the 
truncation error, but the total kinetic energy of the secondary motion in the spherical 
gap is higher for the first-order approximation. For that reason a second-order endpoint 
formula was chosen. Some more details of the discretized boundary conditions are 
given in the appendix. 

A detailed analysis of the stability of the difference approximation was given by 
Bartels (1978). His results show that for the explicit approximation the required time 
step for gap widths s < 0.3 must be kept much smaller than the Neumann stability 
analysis required, and the local Reynolds number formed with the step sizes must be 
less than two. The implicit approximation is less restrictive, but under-relaxation must 
be performed for larger time steps. The stability condition for the spatial resolution, 
which results from the dominance of the main diagonal of the coefficient matrix, 
demands for unlimited time steps that the local cell Reynolds number has to be less 
than two. This condition is too restrictive for the calculation. Neverthelesd, for higher 
Reynolds numbers this limit has to be taken into account and, for this case, the central 
approximation for the convective terms cannot be used. 

4. Accuracy of the finite-difference approximation 
The flow in the gap between rotating spheres is determined by the initial values and 

the time-dependent boundary conditions. I n  order to avoid a falsification of the 
solution the resolution in time and space has to be sufficiently small. The formation 
of the Taylor vortices is caused by temporary growth of small perturbations, when the 
critical Reynolds number is exceeded. I n  the numerical solution these perturbations 
may be completely damped out if the temporal and spatial resolution is too coarse. I n  
order to avoid a trial-and-error determination of the necessary step sizes by numerical 
tests for every gap width and Reynolds number anew, the influence of the truncation 
error is estimated. 

If Taylor vortices are present in the vicinity of the equator of the spheres the flow 
variables behave nearly periodically. The periodicity in the meridional direction 0 is 
scaled on the gap widths s. Thus, close to the equator the flow variables can be approxi- 
mated by a truncated Fourier series, e.g. for I$ 

(4.1) 
N 

m = o  
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The truncation error of the convective terms in the meridional direction for a second- 
order central-difference scheme is thus 

if only the first two terms in (4.1) are retained. It follows that the meridional step size is 

S 
A 0  = - (6e,)t, nr 

where e8 is the maximum permissible error in the meridional direction. A similar 
estimate can be obtained from the step size in the radial direction. The most important 
wavelength in the radial direction is one half of the gap width and yields 

The error bounds er and have to be determined only once by test calculations with 
decreasing step sizes and compared with the flow modes obtained in the experiments 
by Wimmer (1976). Figure 1 shows the result of solutions for s = 0.15 and Re = 1500 
with ee = 0.02 and 6, = 0.07 in the upper part and €0 = 0.17 and E ,  = 0.26 in the lower 
part. Both solutions are approximations to the differential problem, but the solution 
in the lower part of the figure belongs to another acceleration of the inner sphere. It 
was found that the flow fields were correctly predicted if the error bounds were chosen 
as ee 6 0.045 and er < 0.13. 

The magnitude of the time step affects the phase and the damping of the Fourier 
components in an initial-value problem. The influence of the chosen time step was 
investigated in test calculations. The finite-difference formulation is an implicit first- 
order approximation in time, as shown by Bonnet & Roquefort (1976). For a gap 
width s = 0-15, different flow modes result from different angular acceleration of the 
inner sphere when starting from rest. With increasing values At the angular acceleration 
has to be decreased if the same steady-state flow is to be obtained, as shown in figure 2. 
I n  order to investigate this behaviour and to isolate the major parameters affecting 
the calculation, the linearized Burgers equation 

au au a Z u  _ -  - -a-+b- 
at ax ax2 

(4.3) 

was investigated. Here, a is the constant wave speed and b the constant viscosity. For 
periodic initial conditions u ( 0 , x )  = Xg A,expimx the solution of (4.3) is 

W 

u ( x ,  t )  = x A, exp ( - bm2t) exp i m ( x  -at) ,  (4.4) 
W % = O  

where -bm2 is the damping factor and x - a t  is the phase function. A differential 
representation of a finite-difference scheme is 

Using the same initial conditions as for equation (4.3) yields the solution 

m 

v(x ,  t )  = x A ,  exp (ar t )  exp (iait  + i m x )  
m=O 
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FIGURE 1. Steady-state streamline pattern depending on the spatial resolution; start from rest 
with an acceleration of the inner sphere = 0.1 ; Re = 1500, s = 0.15, w z  = 0. (a) Ar = 0.0075. 
A0  = 0.016, At = 0.004; (b)  Ar  = 0.015, A0 = 0.049, At = 0.0191. 

O.O4 t i A 

I 1 I 1 I 

0 0.2 0.4 At 0.6 

FIGURE 2. Influence of the temporal resolution upon the angular acceleration hl separating two 
flowregimes;startfromrest tosteady-st,ate conditions; Re = 1500,s = 0.15, w2 = 0, Ar = 0.0107, 
A 0  = 0.0245; truncation error O ( A t )  in time. Final-state conditions: 0, no vortex, A, two 
vortices in the gap. 

of (4.5), where a, is the damping factor. A forward approximation of the time derivative 
and a central-difference approximation in space for constant step sizes results in 

( -  l)j -- a r  
- bm2 - 2d(mAz)2 

In { i + ( - 1)~’ 4d sin2 4mAx + @sin2 m Ax} 

for the damping factor ar, and 

csinmAx -=- 
1+(-l)i4dsin2+mAx 

1 
a, arctan 

--am cmAx: 

(4.7) 
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for the dispersion coefficient ai. The quantities c = a At /Ax  and d = b At/4x2 denote 
the Courant number and the diffusion number respectively. For j = 1 the solution 
represents an explicit and for j = 0 an implicit difference scheme. The terms ar/ - bm2 
and ai/ - am are the ratios of the numerical to analytical damping factors and the wave 
speeds respectively of the Fourier components. For b = 0 and lim At + 0 the solutions 
reduce to the relationship between phase error and step size Ax for a hyperbolic 
differential equation derived by Kreiss & Oliger (1972). With an implicit scheme all 
Fourier components in the difference equations are more damped than the analytical 
solution. In  the explicit formulation the Fourier components are less damped than the 
analytical solution. This can be seen from the expansion (4.7) and (4.8) for small 
m A x <  1 

ar 1 + ( - 1 ) j -  c2 + 4 d ( m A ~ ) ~ +  ..., -= 
- bm2 2d 

ai -- - I + ( -  l ) i+ld(mAx)2+ .... - am 

(4.9) 

(4.10) 

Note that the numerical Fourier components have phase velocities that  are faster for 
explicit and slower for implicit formulations than for the analytical Fourier com- 
ponents. For the physical damping to be correct, i t  is necessary that c2/2d < 1 or 
4 t  < 2b/a2. In  the case described in figure 2 corresponding to the values a = 0.1 and 
b = 1000, which lie in the range of critical Reynolds number, the time step must be 
kept smaller than At < 0.2. Otherwise the formation of the vortices is suppressed by 
excessive damping. For the second-order scheme with a truncation error O(At2),  the 
lowest-order term for the damping coefficient is Qd(m  AX)^, and results from the spatial 
resolution. For the flow problem under consideration, this result implies that the 
finite-difference method yields meaningful approximations only if the Fourier com- 
ponents with large wavenumbers do not influence the solution. 

5. Results of the calculations 
5.1. Details of the computations 

All results presented are restricted by boundary conditions for a constant angular 
velocity of the inner sphere for the time approaching infinity while the outer sphere 
remains a t  rest. The Reynolds number R e ,  the gap widths s, the angular acceleration 
of the inner sphere GI = dw/dt ,  and the initial condition then determine the flow field. 
The Reynolds number is defined by Re = Ql R:/v and the gap width s = 1 - (, with 
( = RJR,. The subscript 1 refers to the inner sphere and subscript 2 to the outer 
sphere. A certain combination of Re and s yields the Taylor number T a  = Re2(s/()3. 
The torque coefficient results from the integration of the moment of the shear stress in 
circumferential direction over the entire surface and is defined here by 

cm = T/(+pR5, at), 
where T is the torque and p is the density of the fluid. As mentioned before, all flow 
quantities are non-dimensionalized by the radius of the outer sphere R, and a reference 
angular velocity Q, = 800v/R2,. This investigation covers the range of gap widths 
between 0.025 < s < 0.2 in which Taylor vortices occur experimentally. The Reynolds 
numbers are limited by t.he stability of the finite-difference equations and cover a range 
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of 300 < Re < 14 000. Most of the calculations were carried out with the second-order 
implicit scheme with the time step Ati ,  = 0 . 2 5 ( ~ / 0 . 1 5 ) ~ .  This time step is approxi- 
mately (Atex)+, where Atex is the permissible explicit time step. The spatial step sizes 
were chosen according to the previously mentioned error analysis. Both methods 
yielded the same results and differed only in the round-off errors. However, the implicit 
scheme needed about 50 per cent less computer time than the explicit scheme. Details 
of the error bounds for the iteration procedures are presented in the appendix. 

5.2. Physical and mathematical properties of the $ow jield 
For small Reynolds numbers the viscous forces in the governing equations (2.1)-(2.3) 
dominate, and for steady boundary conditions only one unique steady-state solution 
exists independent of arbitrary initial conditions. The lowest-order solution of a 
parameter expansion in powers of Re shows that the angular velocity w is only a 
function of the radius r. In the case that the inner sphere rotates and the outer is at  rest, 
the Rayleigh criterion implies that such a distribution of w for an inviscid fluid is 
unstable. If the viscosity is taken into account, this stability limit is shifted to a higher 
Reynolds number, as was first shown for the flow between concentric cylinders by 
Taylor (1923) for small gap widths s < 1.  Kirchgassner (1 961) evaluated t,he limit of 
stability for moderate gap widths. If this limit of stability, which is characterized by 
a critical Reynolds number or Taylor number, is exceeded Taylor vortices appear in 
the gap. These properties are similar to the properties in the flow along a concave 
curved wall where the boundary layer is unstably stratified. Vortices, called Goertler 
vortices, may then appear in the boundary layer. As mentioned before, in spherical 
gaps the critical Reynolds number separating the subcritical flow without and the 
supercritical flow with Taylor vortex cells is nearly the same as in cylindrical gaps. 
However, in a certain range of gap widths the supercritical-flow regime is not unique. 
Different steady axisymmetric flows with and without Taylor vortices occur side by 
side. This leads to the question as to whether these flows all bifurcate from the same 
subcritical-flow regime or bifurcate successively. The results presented here and the 
experiments by Wimmer (1976) indicate that the supercritical flows with Taylor 
vortices bifurcate from the same subcritical-flow regime. 

Several theoretical investigations have been devoted to predicting the flow field in 
spherical gaps for finite Reynolds numbers and the critical Reynolds number at  which 
that flow first becomes unstable. The stability analysis is more complicated because 
the simplest axisymmetric solution still depends on two independent spatial variables, 
which cannot be separated. The analyses of the stability by Yakushin (1970), Munson & 
Joseph (I97 1 b ) ,  Munson & Menguturk ( 1  975) and Walton (1 978) differ in the approxi- 
mation of the basic flow which first becomes unstable. Their results have in common 
that the critical Reynolds number in spherical gaps is only slightly different from the 
critical value for cylindrical gaps. However, it  must be assumed that the problem of 
hydrodynamic stability in spherical gaps is more complicated, because the different 
final solutions in the experiments by Wimmer (1976) show the influence of the time 
dependence, and therefore the temporal development of the flow field has to be taken 
into account. This leads to an extension of the stability investigation for unsteady 
flows. 

Below the previously mentioned critical Reynolds number the numerical integration 
of the governing equations (2.1)-(2.3) yields one unique steady solution as time goes to 
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infinity. This solution is called subcritical or basic flow. The numerical results do not 
differ essentially as compared with the lowest-order solution in an expansion of powers 
of Re. The secondary flow forms one large toroidal vortex in each half-plane. The 
stream function is distributed uniformly, and no periodicity in the higher-order terms 
in the meridional direction could be deduced from the numerical results. On exceeding 
the critical Reynolds number slightly, e.g. Re > 670 for a gap width s = 0.15, the flow 
patterns change suddenly. Near the equator the stream function develops a saddle-point 
singularity and possesses periodic higher-order terms in the meridional direction. 
Increasing the Reynolds number above Re = 700 then leads to the formation of 
isolated Taylor vortex cells. These flow patterns are typical for the range of gap width 
between 0.1 < s < 0.17. For s > 0.17 the periodicity above Recrit disappears again 
with increasing Reynolds number and does not lead to vortex cells. On the other hand, 
for s c 0.1 the numerical results show either a flow pattern without detectable 
periodicity or isolated vortex cells above Recrit. 

When solving the unsteady Navier-Stokes equations with finite-difference methods, 
it should be noted that all predicted steady solutions must be defined as highly 
stable solutions, because of the truncation and round-off errors in the numerical 
calculation. 

5.3. FlowJield for  a gap width s = 0.15 

Since the flow field between concentric spheres for a gap width s = 0.15 was investi- 
gated experimentally by Sawatzki & Zierep (1970) and Wimmer (1976), it is suitable 
for comparing the influence of the restriction for two-dimensional flows as well as the 
numerical approximation. In  the experiments, five different laminar flow modes exist 
above the critical Reynolds number. Three of these modes are axially symmetric and 
steady, containing either one or two vortex cells near the equator or none. The other 
two modes are unsteady, with one or two vortex cells but without axial symmetry. 
The various modes that can be observed for the same Reynolds number are generated 
by different angular accelerations during the spin-up phase. The angular acceleration 
that has to be chosen if one of the modes is to appear depends on the h a 1  Reynolds 
number. 

The solution of the finite-difference equations shows that two flow modes are possible 
for Reynolds numbers larger than Re = 1250 if axial symmetry is assumed. One of 
these flow modes contains two vortex cells in each half-plane just above the equator, 
and the other does not contain any vortex cells. Starting from rest for a Reynolds 
number Re = 1500 the maximum acceleration that generates two vortex cells was 
found to be i'll = 0.105Q$ If one tries to compare these data with the experimental 
results of Wimmer (1976), one finds for an outer radius R, = 80 mm and a kinematic vis- 
cosityof v = 1.21 x 10-4m2/s thatthereisacorresponding accelerationoffi2, = 2 4 . 0 2 ~ ~ ~ .  
This value corresponds to an acceleration which generates unsteady flow modes. The 
maximum acceleration beyond which the generation of vortex cells was completely 
suppressed was measured to i'll = 30sP2. The streamline patterns of these flows are 
depicted in figures 3 (a ,  b )  for two different accelerations. The angular acceleration 
hl = 0.1 yields a flow with two vortex cells (figure 3 b )  while only a slight increase to 
hl = 0.12 does not lead to any vortex formation at all (figure 3a).  

For Reynolds numbers between 850 < Re < 1250, only the flow mode with two 
vortex cells is obtained, independent of the acceleration chosen. In the experiments 
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FIGURE 3. Steady-state streamline pattern of the various flow modes; Re = 1500, s = 0, 15. 
(a )  Start from rest with an acceleration hl = 0-12; ( b )  start from rest GI = 0.1 ; ( c )  spin-up from 
rest, temporary perturbation of equatorial symmetry. 

discussed by Wimmer (1976), a single vortex cell was observed above a Reynolds 
number of about Re = 625 for very small angular acceleration GI = 0.0065. This flow 
mode does not appear even if the angular acceleration is smaller than this limit or the 
step sizes are reduced. A possible explanation for this behaviour is that three-dimen- 
sional perturbations are necessary if only one vortex is to be generated. Such pertur- 
bations destroy the symmetry in the equatorial plane. For that reason, the symmetry 
condition a t  the equator imposed was slightly perturbed during the spin-up phase 
near the expected critical Reynolds number Re = 625. A change of the symmetry 
condition from 6 = 90" to 90.7" was sufficient for the flow to exhibit a single vortex cell 
in each half-plane near the equator a t  Reynolds numbers above Re = 650. However, 
below Re = 700 the single vortex disappears again after replacing the perturbation by 
the proper symmetry condition. Above Re = 700 the flow field with one vortex cell 
approaches asymptotically the steady state after removing the perturbation of sym- 
metry. This behaviour of the solution shows how sensitively the equations of motion 
react to the boundary conditions in the equatorial plane, and that the finite-difference 
approximations of the boundary conditions there can be of crucial importance for the 
accuracy of the solution. If one tries to calculate the flow for the whole half-space 
between 0 6 0 < T ,  perturbations of the equatorial symmetry are introduced in the 
integration through the direction in which the sweeps of the iteration are carried out. 
However, it was found out that the corresponding errors are too small and do not 
strongly influence the final solution. The third flow mode with one vortex cell is shown 
in figure 3 (c) for the same Reynolds number Re = 1500. 
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FIGURE 5. Torque coefficient c, and transition between various flow modes, s = 0.15; stepwise 
increase or dec2ease of the Reynolds number. ~ , predicted stable steady-flow regimes; 
---.-, transition-region flow remains slightly unsteady; - - - - - , continuation of estimated 
unstable-flow regimes ; 0, a, A, calculated points. 

I n  figure 4 the computed torque coefficients are compared with the experimental 
data of Wimmer (1976). The maximum difference (about 6%) occurs for the higher 
Reynolds number, and is caused by the truncation error in the finite-difference 
scheme, which is too coarse in this range. On the whole, the values compare favourably 
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with experimental data. The differences in the torque coefficients for the various flow 
modes result from the different distribution of the shear stress a t  the inner sphere and 
are caused by the difference in the secondary motion in the gap. For Re = 1500, the 
difference between the flow mod& with two vortex cells and with no vortex cell yields 
28 per cent for the torque coefficient cm. 

In  order to prove how the solution behaves if the angular acceleration of the inner 
sphere goes to zero, the integration was carried out with a stepwise increase or decrease 
of the Reynolds number between 5 50 and 5 100. The initial condition for each new 
solution was the final solution of the previous step. The results of this calculation are 
shown in figure 5 ,  where the torque coeEcient cm versus the Reynolds number is 
plotted. Beginning with Re = 550 the only steady solution is the subcritical flow with 
no vortex cell. Increasing the Reynolds number step by step leads above Re = 700 to 
the formation of two vortex cells. Between 700 < Re < 900 the vortices are picking 
up strength and gain more and more influence upon the torque. I n  this transition 
region the solutions do not reach the steady state but oscillate. However, the oscil- 
lations are very small, with amplitudes for cm less than one per cent. The supercritical 
flow with no vortex could be maintained above Re = 1300. Decreasing the Reynolds 
number t'o Re = 1200 yields the flow with two vortex cells. It is supposed that the 
flow without vortex cells in the range 700 < Re < 1300 is still a solution of the steady 
Navier-Stokes equations, but an unstable solution. The same is expected to be true 
for the other types of steady flows with Taylor vortex cells that become unstable 
below certain critical Reynolds numbers. Such unstable solutions cannot be predicted 
by solving the unsteady Navier-Stokes equations. Therefore the dashed lines in 
figure 5 represent only speculated continuations of unstable steady flows. The third 
flow mode with one vortex cell remains stable above Re = 700 if once generated by 
perturbation of the symmetry. If the Reynolds number decreases from Re = 700 to 
Re = 687 the flow field changes into the flow without vortex cells very ra.?idly. It 
should be noted that the branch points of the flow as well as the shape of the transitions 
may still be influenced by the finite resolution of the difference equations. However, 
differences between experiments and theory may also result from the axisymmetric 
flow assumption. 

5.4. Taylor vortex cells in spherical gups 

The experimental results and the theoretical results reported here indicate that the 
occurrence of a particular solution depends on three conditions: the various flow modes 
can exist only if the Reynolds number is sufficiently large; the angular acceleration of 
the inner sphere cannot be arbitrary if a certain flow mode is to be generated; and, 
finally, the flow that exists for large times can be influenced strongly by the initial 
conditions. 

A number of calculations were carried out to correlate the range of occurrence of 
various flow modes with the Reynolds number and the gap width. Therefore, the 
following assumptions were introduced: the flow field is initially a t  rest, and the inner 
sphere is accelerated to  the final angular velocity in the first time step. With these 
assumptions, the solution depends only on the Reynolds number and the gap width. 
The gap width was varied between 0.05 < s < 0.2, and the Reynolds number between 
300 < Re ,< 4000. The results of the calculations are summarized in figure 6 and show 
the flow modes in the (Re, s) parameter space. 
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FIGURE 6. Various flow modes in the spherical gap dependent on Reynolds number and gap 
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The curve (a)  in figure 6 represents the limit of stability for cylindrical gaps after 
Kirchgassner (1961). The calculations have shown that the flow field changes con- 
tinuously if this limit is exceeded, but the formation of Taylor vortex cells is completed 
a t  higher Reynolds numbers. Besides the lower limit (a) ,  which separates the basic 
flow from the flow with Taylor vortices, the calculations yielded another limit denoted 
by ( b ) .  If the Reynolds number exceeds the value given by curve (b) ,  no vortex cells in 
the gap occur. This limit can be described approximately by the relation Ta*s/[ = k,  
where k is a constant determined from the numerical results to  be equal to 17.5. The 
corresponding upper limit for the Reynolds number is then given by Re = k ( t / s ) e .  
Between these two limiting curves, various steady and unsteady flow modes are 
observed, depending on the Reynolds number and the gap width. The number of 
Taylor vortices increases with decreasing gap width; which was first observed by 
Sawatzki & Zierep (1970). 

It is also noted that vortex cells are only formed near the equator between 
70" < 8 < 90". The vortices vary in sizes, and only for certain Reynolds numbers are 
their sizes comparable to  the gap width s. The maximum possible number of vortex 
cells in the half-space seems to be given by n _N 0-4(1 - s ) / s ,  where n is the integer 
number obtained by rounding-off. The largest gap width for which Taylor vortex cells 
were obtained was found to be s = 0.17. Larger values always yielded a flow without 
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FIGURE 7. Steady-state streamline pattern for various Reynolds numbers ; spin-up from rest; 
gap width s = 0.1. ( a )  Re = 1400; ( b )  2700; (c) 4000; (d )  4500. 

vortices. In  the range between 0.11 < s < 0.17, the two previously described flow 
modes appear one with two vortices -in figure 6 denoted by (2), where the subscript s 
stands for steady- and the other without vortices. For a gap width of s = 0.1, two 
vortices are formed, and if the Reynolds number is increased to Re = 2700 four are 
formed. If the Reynolds number is increased further, the three vortices near the 
equator form a large vortex cell. For Re = 4500, all vortices disappear, as can be seen 
in figure 7, where the streamline patterns of the various modes are depicted. 

The same gap width s = 0.1 was investigated by Astafeva et al. (1977). These authors 
increased the Reynolds number step by step, starting with the final solution of the 
last step as initial values for the next step. The step sizes in the Reynolds number Re 
varied between 50 and 100. They found two vortices for increasing Reynolds number 
between 1300 6 Re 6 2200, and four vortices between 2200 6 Re < 2700. Above 
Re = 2700, the flow field remains unsteady. If the Reynolds number decreases, a third 
solution with three vortices appears a t  Re = 1700. It is obvious that this mode cannot 
be reached as an initial-value problem starting from rest. The limits and the range of 
existence of the different mode are almost the same as the results reported here. 

For gap widths between 0.07 6 s 6 0.09, steady-flow modes could not be found in 
the vicinity of the limit of stability curve (a).  The flow field is not steady for two or for 
three vortex cells. Near 0 = 70", new vortex cells are continuously generated that 
displace the already existing vortices and move toward the equator where they finally 
disappear. In figure 8, the torque coefficient cnli of the flow is shown for s = 0.08 and 



0.135 

0.130 

cm 0.125 

0.120 

0.115 

Taylor vortices between two concentric rotating spheres 

I I I I I 1 

1 3  
\ 

I I- f P 4  

1 I I I I 8 

100 200 300 
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FIGURE 9. Streamline pattern of the unsteady flow mode; s = 0.08, Re = 2000; 
numbers 1, 2, 3, 4 refer to the extremals in figure 8. 
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Re = 2000. It can be seen that the process of generation and destruction is periodic and 
the duration of one period is t ,  = 52. The corresponding streamline pattern near the 
extremals (1)  to (4) are shown in figure 9. At the minima ( 2 )  and (4), the vortex near the 
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FIGURE 10. Steady-state streamline pattern for three different gap widths: (a) a = 0.15, 
Re = 1500, ( b )  0-1, 2700, (c) 0.0625, 4000. 

equator disappears. The duration of that process depends on the Reynolds number; 
e.g. a t  Re = 1950 the periodicity is t ,  = 63.5, and the same time results for Re = 2150. 

The range in which this mode occurs, denoted by (2,3) where ' u '  stands for unsteady 
in figure 6, was estimated. The dashed-dotted lines that separate the different flow 
modes are lines of constant Taylor numbers. The dashed lines result from the consider- 
ation that the number of vortices is a decreasing function of the gap width s and an 
increasing function of the Reynolds number Re. 

As pointed out before, the variety of flow modes observed increases with decreasing 
gap width. The number of vortex cells being formed as well as the steady and unsteady 
modes, lie close to each other. For s = 0.07, it is noted that the instant of time in which 
the vortices are generated near 0 = 70' does not coincide with the time of the break- 
down near the equator. The time lag between generation and breakdown is constant, 
both processes differ in phase while the duration of the period is the same. The phase 
difference depends also on the Reynoldsnumber.Above Taylor numbers Ta = 3600,only 
steady modes were found in the range investigated up to Re = 4000. The number of 
vortex cells being formed increases with decreasing gap width. The size of the vortex 
cells varies considerably, those rotating counter-clockwise (@ > 0 )  are usually larger 
than those rotating in the clockwise direction. This observation was already made in 
the experiments by Sawatzki & Zierep (1970). Onlyfor small gap widths are thevortices 
in the vicinity of the equator almost of equal size. Figure 10 shows the steady-state 
streamline pattern for three gap widths s = 0.0625, 0-1 and 0.15. 

Until now, it has not been possible to compare these results with experimental data, 
since the onlydata available are those given by Sawatzki & Zierep (1970) andWimmer 
(1976) for a gap width s = 0.15. It must also be pointed out again that all calculations 
are valid only for axisymmetric configurations, and it is not known how much the 
various flow modes observed are changed by three-dimensional effects. 
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5.5. Flow in very narrow gaps s = 0.025 

The investigation of flows in very narrow gaps requires extremely large storage 
capacities and computation time. The flow-field computation was therefore restricted 
to a single gap width s = 0.025 and a Reynolds number Re = 14000. The initial 
conditions are the same as in the previous case; i.e. spin-up from rest to steady-state 
boundary conditions. The results of the integration indicate that the unsteady be- 
haviour of the flow found for gap widths 0.05 < s < 0.07 just above the critical 
Reynolds number is also present in the flow for the conditions stated. 

The flow motion doesnot exhibit a periodic behaviour but israther irregular, as can be 
seen in figure 11, where the torque coefficient is plotted versus the non-dimensionalized 
time. The instantaneous flow modes appear in great variety and a reappearance of a 
mode, which existed already a t  an earlier time, could not be observed during the time of 
integration, viz t = 30. There are basically two reasons for the irregularities in the flow. 
The vortices are only observed in the vicinity of the equator, i.e. 70" < 8 < 90". Since 
the order of magnitude of the size of the vortices is necessarily that of the gap width, 
the number of possible vortex cells is limited. The other reason is that the time required 
for the formation of a vortex differs from the time required for the destruction near 
the equator. While for the formation of two cells about t ,  = 3.4 dimensionless time 
units were necessary, about ta = 9 units were counted for the destruction of two 
vortices. Since in the same time interval more vortices are generated than destroyed, 
several vortices collapse into a larger cell somewhere between the point of generation 
and the equator. The number of vortex cells varied between n = 13 and n = 16. The 
point of intermediate collapse was never the same. The distribution of the vortex cells 
for s = 0.025 is shown in figure 12 for three dimensionless times. The streamline pattern 
for t = 16.06 corresponds to a maximum in the curve of torque coefficient, while the 
other two belong to a minimum. The numbers in figure 12 give the values of the 
extremals of the dimensionless stream function. The difference between two neigh- 
bouring numbers is a measure of the variation of the flow in the collateral direction. 
For t = 20.81, three vortex cells collapsed into a single one near 8 = 82", while, for 
t = 25.52, two cells just generated united near 8 = 72". 

Some of the details of the generation and destruction can be seen in figure 13, where 
the stream function is plotted versus the colateral co-ordinate 8 for a sequence of 
times. The radial co-ordinate is chosen to be r = E +  is = 0-9875. The time interval 
from t = 16.05 to t = 25.05 corresponds roughly to the time required for the destruction 
of two vortices near the equator. It can be seen that perturbations are continuously 
initiatednear B = 70". They grow in amplitude and travel towards theequator. Thereby 
new vortices are generated. In  figure 13 one of the perturbations is marked by the 
symbol p .  

Its  growth in amplitude and its motion towards the equator can clearly be recog- 
nized. For the time t = 20.81, the collapse of three vortex cells into a single one near 
8 = 83" is almost completed. Some time later, at  t = 25.25, the same process is initiated 
again. It is seen that two cells with $ > 0 unite while one cell with @ < 0 is destroyed. 
Comparison with the experimental result of Sawatzki & Zierep (1970) shows that, for 
the gap width considered, the vortex cells near 8 = 70" are not axially symmetric. 
They either seem to begin somewhere in the circumferential direction or are inclined 
with respect to the equatorial plane and extend all the way up to the pole. 

The results of the calculations showed that the number of vortices for each instant 
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FIQTJRE 11. Temporal variation of the torque coefficient c, in the narrow spherical gap ; 8 = 0.025, 
Re = 14000; t,, period of vortex generation; ta, period of vortex destruction. 
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FIGURE 12. Streamline pattern of the unsteady-flow mode in the narrow gap; s = 0.025, 

Re = 14000. (a) Time t = 16.06; ( b )  20.81; (c) 25.52, after spin-up from rest. 
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FIGURE 13. Temporal development of the stream function in the centre r = 0.9875 of the spherical 
gap; 8 = 0.025, Re = 14000; p indicates the spatial shift of one extremal. 

of time is determined by the phase difference between generation and destruction and 
the duration of one period. In figure 14 the torque coefficients of unsteady flow modes 
are compared with others. The Reynolds number and gap width are introduced as 
parameters. For the largergap widths, both processes are in phase. For s = 0-06, it phase 
difference appears for the first time. The lower minima of the torque coefficients 
indicate the time interval in which vortices are destroyed near the equator. During this 
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interval, another relative minimum is observed in-between which is caused by the 
formation of two new vortices. The duration of both periods is the same. If the gap 
width is decreased further, generation and destruction times differ from each other, 
and finally a completely irregular behaviour is observed for s = 0.025. 

I n  connection with t,hese results, i t  should be noted that so far the influence of the 
Reynolds number on the characteristic periods could not be clarified. Furthermore, 
it must be pointed out again that the results discussed here are based on the assumption 
that the angular velocity of the spheres is constant and this is very difficult to achieve 
in an experiment because the torque must be a function of time. 
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Up until now, it has not been clear whether the calculated unsteady flow modes in 
the vicinity of the critical Reynolds number are caused by the finite step sizes (i.e. by 
truncation error), or whether they are solutions of the axisymmetric Navier-Stokes 
equations. This is also pointed out in the investigation by Astafeva et al. (1977). As the 
results of the integration described in this paper have shown, the equatorial symmetry 
can be of crucial importance for the flow modes to be generated. Because of the accuracy 
requirements, it is rather cumbersome to extend the solution to three-dimensional 
flows. These problems must be left for further work. 

This work was carried out a t  Aerodynamisches Institut RWTH Aachen. The author 
is very grateful to Prof. E. Krause for his encouragement and helpful advines. 

Appendix 
Discretized boundar~ conditions 

The symmetry condition for the circumferential component a$/% = 0 at the equatorial 
plane is replaced by a second-order backwards approximation. The value of 6 a t  the 
time step n is given by 

6 c r < 1, 0 = &7r) $3 = $(4#+1-q5&2). (A 1)  

For the implicit scheme (A 1)  is incorporated into the algorithm. At the pole 8 = 0 the 
boundary condition $ = 0 is independent of the time. The vorticity component < a t  
the rigid boundaries has to be determined in such a way that the Stokes no-slip con- 
dition a@/ar = 0 is guaranteed. A second-order endpoint approximation yields a t  the 
inner sphere 

and a similar formula holds a t  the outer sphere. The boundary condition for g a t  the 
pole 8 = 0 and at  the equatorial plane 8 = &r is independent of the time and always 
zero. The singularities due to the spherical co-ordinate system are not part of domain 
of integration and need, therefore, no further attention. 

Error bounds for terminating the computation 

Three different error bounds control the numerical computations of the difference 
equations (3.1)-(3.4). Because the vorticity a t  the rigid walls and the coefficients u 
and w in the momentum equations are not known in advance, the implicit-difference 
equations have to be solved iteratively for each time step. The iterations were termi- 
nated when the difference between two steps 1 + 1 and 1 had yielded 

l[l+l-[lll,j = al(l[z+ll + 10-lmax l < z l l , j )  (j = 2, 3, ...) J -  1) .  

The subscript 1 refers to the inner sphere. For gap widths s < 0.05 an error bound of 
el = 5 x 10-4 showed sufficient accuracy. The number of iterations varied between 
about six at  the beginning and unity when approaching a steady-state solution. 

The Poisson equation (3.5) was solved by the successive overrelaxation method and 
the iterations were stopped when the stream function had met the condition 
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a t  every grid point i, j. The symbol Di represents the second-order difference scheme 
of the differential operator D2. A value of e2 = 0.1 was sufficient for all calculations 
independent of the gap widths or the grid size. The condition has the advantage that it 
determines automatically the necessary relative number of digits, which must increase 
with decreasing grid size. For example, the relative round-off error q. = I 1 - $ 1 + 1 / $ z 1 4 , j  
was smaller than lO-4for a gap width of s = 0.15 with a step size Ar = 0.01, and smaller 
than 10-7 for s = 0.025 with Ar = 0.0018. I n  order to  restrict the computational effort 
in the time domain, a steady-state solution was assumed if the difference of the stream 
function @ between two time levels n + 1 and n satisfied the condition 

I n  most of the calculations, a value of e3 = 10 was sufficient, but close to the critical 
Reynolds number c3 had to be reduced to otherwise the very slow rearrangement 
of the flow field would be suppressed. 

All these error bounds were carefully tested for several gap widths and Reynolds 
numbers. A further reduction of these error bounds brought no improvement of the 
accuracy of the solutions, a t  least for three significant figures, and that is the same order 
of magnitude as the truncation error of the finite-difference approximation. 
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